genetically modified organism

While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style Copy Citation Share to social media Give Feedback External Websites Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites print Print Please select which sections you would like to print: verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style Copy Citation Share to social media External Websites Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites Also known as: GMO Written by Judith L. Fridovich-Keil

Professor, Department of Human Genetics, Emory University School of Medicine in Atlanta. She has contributed to Brenner's Online Encyclopedia of Genetics and is the coauthor of numerous research.

Judith L. Fridovich-Keil , Julia M. Diaz

Postdoctoral researcher, Biology Department, Woods Hole Oceanographic Institute, Woods Hole, Massachusetts.

Julia M. Diaz • All Fact-checked by The Editors of Encyclopaedia Britannica

Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica Last Updated: Aug 21, 2024 • Article History Table of Contents

genetically modified barley

genetically modified barley

Ask the Chatbot a Question

Ask the Chatbot a Question

Top Questions What is a genetically modified organism?

A genetically modified organism (GMO) is an organism whose DNA has been modified in the laboratory in order to favour the expression of desired physiological traits or the production of desired biological products.

Why are genetically modified organisms important?

Genetically modified organisms (GMOs) provide certain advantages to producers and consumers. Modified plants, for example, can at least initially help protect crops by providing resistance to a specific disease or insect, ensuring greater food production. GMOs are also important sources of medicine.

Are genetically modified organisms safe for the environment?

Assessing the environmental safety of genetically modified organisms (GMOs) is challenging. While modified crops that are resistant to herbicides can reduce mechanical tillage and hence soil erosion, engineered genes from GMOs can potentially enter into wild populations, genetically modified crops may encourage increased use of agricultural chemicals, and there are concerns that GMOs may cause inadvertent losses in biodiversity.

Should genetically modified crops be grown?

The question of whether genetically modified (GM) crops should be grown is one that has been debated for decades. Some people argue that GM crops can lower the price of food, increase nutritional content, and thus help to alleviate world hunger, while others argue that the genetic makeup of plants may introduce toxins or trigger allergic reactions. Learn more at ProCon.org.

Recent News

Aug. 20, 2024, 11:38 PM ET (ABC News (Australia)) Aug. 11, 2024, 8:44 PM ET (ABC News (Australia))

genetically modified organism (GMO), organism whose genome has been engineered in the laboratory in order to favour the expression of desired physiological traits or the generation of desired biological products. In conventional livestock production, crop farming, and even pet breeding, it has long been the practice to breed select individuals of a species in order to produce offspring that have desirable traits. In genetic modification, however, recombinant genetic technologies are employed to produce organisms whose genomes have been precisely altered at the molecular level, usually by the inclusion of genes from unrelated species of organisms that code for traits that would not be obtained easily through conventional selective breeding.

Genetically modified organisms (GMOs) are produced using scientific methods that include recombinant DNA technology and reproductive cloning. In reproductive cloning, a nucleus is extracted from a cell of the individual to be cloned and is inserted into the enucleated cytoplasm of a host egg (an enucleated egg is an egg cell that has had its own nucleus removed). The process results in the generation of an offspring that is genetically identical to the donor individual. The first animal produced by means of this cloning technique with a nucleus from an adult donor cell (as opposed to a donor embryo) was a sheep named Dolly, born in 1996. Since then a number of other animals, including pigs, horses, and dogs, have been generated by reproductive cloning technology. Recombinant DNA technology, on the other hand, involves the insertion of one or more individual genes from an organism of one species into the DNA (deoxyribonucleic acid) of another. Whole-genome replacement, involving the transplantation of one bacterial genome into the “cell body,” or cytoplasm, of another microorganism, has been reported, although this technology is still limited to basic scientific applications.

GMOs produced through genetic technologies have become a part of everyday life, entering into society through agriculture, medicine, research, and environmental management. However, while GMOs have benefited human society in many ways, some disadvantages exist; therefore, the production of GMOs remains a highly controversial topic in many parts of the world.

GMOs in agriculture

Genetically modified (GM) foods were first approved for human consumption in the United States in 1994, and by 2014–15 about 90 percent of the corn, cotton, and soybeans planted in the United States were GM. By the end of 2014, GM crops covered nearly 1.8 million square kilometres (695,000 square miles) of land in more than two dozen countries worldwide. The majority of GM crops were grown in the Americas.

Engineered crops can dramatically increase per area crop yields and, in some cases, reduce the use of chemical insecticides. For example, the application of wide-spectrum insecticides declined in many areas growing plants, such as potatoes, cotton, and corn, that were endowed with a gene from the bacterium Bacillus thuringiensis, which produces a natural insecticide called Bt toxin. Field studies conducted in India in which Bt cotton was compared with non-Bt cotton demonstrated a 30–80 percent increase in yield from the GM crop. This increase was attributed to marked improvement in the GM plants’ ability to overcome bollworm infestation, which was otherwise common. Studies of Bt cotton production in Arizona, U.S., demonstrated only small gains in yield—about 5 percent—with an estimated cost reduction of $25–$65 (USD) per acre owing to decreased pesticide applications. In China, where farmers first gained access to Bt cotton in 1997, the GM crop was initially successful. Farmers who had planted Bt cotton reduced their pesticide use by 50–80 percent and increased their earnings by as much as 36 percent. By 2004, however, farmers who had been growing Bt cotton for several years found that the benefits of the crop eroded as populations of secondary insect pests, such as mirids, increased. Farmers once again were forced to spray broad-spectrum pesticides throughout the growing season, such that the average revenue for Bt growers was 8 percent lower than that of farmers who grew conventional cotton. Meanwhile, Bt resistance had also evolved in field populations of major cotton pests, including both the cotton bollworm (Helicoverpa armigera) and the pink bollworm (Pectinophora gossypiella).

Other GM plants were engineered for resistance to a specific chemical herbicide, rather than resistance to a natural predator or pest. Herbicide-resistant crops (HRC) have been available since the mid-1980s; these crops enable effective chemical control of weeds, since only the HRC plants can survive in fields treated with the corresponding herbicide. Many HRCs are resistant to glyphosate (Roundup), enabling liberal application of the chemical, which is highly effective against weeds. Such crops have been especially valuable for no-till farming, which helps prevent soil erosion. However, because HRCs encourage increased application of chemicals to the soil, rather than decreased application, they remain controversial with regard to their environmental impact. In addition, in order to reduce the risk of selecting for herbicide-resistant weeds, farmers must use multiple diverse weed-management strategies.